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ABSTRACT

We present a data-driven protocol and a supporting architecture for communica-
tionamong cooperating intelligent agents in real-time diagnostic systems. The
system architecture and the exchange of information among agents arc based on
simplicity of agents, hierarchical organizationof agents, and modular non-
overlapping division oft hc problem domain. ‘1 "hese feat ures combine to enable ef-
ficient diagnosis of complex system failures in real-time environments with high
data volumes and moderate failurc rates. Preliminary results of the real-world ap-
plication of this work to the monitoring and diagnosis of complex systems arc

discussed in the context of NASA's interplanetary mission operations,
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1.0 INTRODUCTION

The interact ion and coordination of multiple agentsin dist ributed problem-solving

systems has been of interest for avariety of domains whose complexit y exceeds the
practical capability of monolithic solutions. 1 ixamples of domains in which dis-
tributed systems have been explored include monitoring [1 .esser 1988], planning
[Nowe 1 990, [Bratman 1988], and diagnosis [1>’ Ambrosio 1990). These and other
approaches [Durfec 1987], [Gasser 1988], [Hayes-Roth 1988] emphasize some
form of iterative exchange of partial information among nodes for the purpose of

event ual convergence on complete sol ut ions.

Reeently, the need for mechanisms of cooperation that are sufficiently robust for
real-workl applications has been addressed [Jennings 1992] as part of GRATI*, an
implementation effort targeted at monitoring. GRATI* makes contributions to-
ward a clearcr and more easily implementable interaction of agents during
collaborative problem solving. GRATE* addresses a problem domainin which
events occur unpredict abl y and decisions may be based on i ncomplete or impreci SC
data. Towards this end, the notion of joint responsibility is proposed as an alterna-
tive to the more conventional notion of agents acting in self-jntcrest. The potential
for large communication overhead is a possible disadvantage of the GRATH* sys-
tem, particularly for applications withtime critica analysis. The protocol and
architecture, described in this paper builds on the, notion of jointresponsibility, and
uscs modular problem decompositionand (lata-driven reasoning in order to mini-
mize communication between agents. This approach has been applied to the
MARVLEL system [ Schwuttke 1992] for automated monitoring and diagnosis of
Voyager spacccraft telemetry and has been shown to achieve rebus{ and coherent
behavior for complex, real-time diagnostic agents ecmbedded ina Conventional (al-
gorithmic) monitoring systen.




2.0 THE CHARACTERISTICS OF AGENTS IN MARVE] .
Agents are embedded diagnosticians. Diagnostic modules arec cmbedded in more
cfficient algorithmic code. The algorithmic code performs all functions that do not

explicitly require reasoning capability, so that the usc of the Icss efficient reasoning
modulesis limited to those functions for which it is essential.

Diagnosis is data-driven. Yorward-chaining demons arc used to represent domain
know] edge. Reasoning is activated by the appcarance of data that requires
diagnosis. The initial determination that diagnosis is required ismade by algorith-
mic monitoring code, which detects potential anomalies algorithmically and passes
the. anomalous data to an appropriate diagnostician, In the absence of anomalous
data within its domain, an agent is idle.

The domain of individual agents is constrained. An agent is responsible for a
small, clearly partitionable domain of expertise. Partitioning is governed by the
natural decomposition of the system being diagnosed. This helps overcome disad-
vantages associated with rule-based systems for which, typicaly, implementation
can be intractable, execution is non-dcterministic and relatively slow, and verifi-
cation can be difficult. Small, modular knowledge-bases enable dcvelopers to
handle more casil y definable subproblems. Smaller knowledge bases execute more
efficiently, because less time is spent in search. Yinally, smaller knowledge-bases
arc easier to verify.

The domain of individual agents iS non-overlapping. A particular domain of ¢x -
pertisc is assigned only to onc agent to avoid redundant reasoning.

Agents carry individual responsibility for problems entirely within their domain.
Agents have sufficient knowledge to be fully accountable for diagnoses within their
arcas and have no knowledge of other domains. This requires that accountability
for locally detectable failures must be local.

Failure domains may not map directly to agent domains. 1)iagnosis requires more
than one agent when the symptoms manifest themselves in more than domain.



Mets-knowlmlgc enables agents to instigate cooperation for diagnoses bheyond
their domain. Agents have meta-knowledge to identify symptoms of failures that
could possibly extend beyond their domain. Mcta-knowledge is contained in a sct
of rules ineach knowledge base, and is associated with the occurrence of events for

which the cooperat ion of ot her agents might be requi red,

Agents report all problems that extend beyond their domain. Mcta-knowlcedge
cnables an agent to determine which symptoms from its domain may portend prob-
lems beyond its domain. The mcta-knowledge also includes the specific agent(s) to
which the information should be forwarded,

A hierarchy of agents provides coordination. An agent forwards all known infor-
mation pertaining to failures beyond its domain to another agent at the next higher
level in the hicrarchy. The underlying assumption on forwarded messages is "bet-
ter safe than sorry”; it isup to the agent receiving the information to determine
whether a fault requiring a diagnostic message and an alarm has occurred or wheth-
cr the anomalous data has some other explanation. This agent may also reccive
messages from other lower level agents. Agents at the higher levelare aso imple-
menied according to the principles outlined here; thus reasoning at the higher level
of the hierarchy is also data driven. The agents at the higher level arc activated by
messages from lower level agents, just as the lowest level agents were activated by
messages of symptoms detected by algorithmic code. Communication is one way,
in most cases, and messages arc dirccted with mcta-knowledge to the relevant
agent(s) in order 10 complete the final analysis of the anomalous data and provide
diagnosis of any associated failures.

Agents share responsibility for diagnosis of problems that overlap domains. Joint
responsibility exi stsin that the lower-level agents are responsible for report i ng ap-
propriate symptoms upwards in the hicerarchy and the higher-level agent(s) arc
responsible for correct 1y determining whether failures have occurred and providing
appropriate diagnoses. This differs from the “self interest” model of communica-
tion[Durfec 1988] and is similar to the joint responsibilit y model [Jennings 1992,]



in which agents must temper their self-in[c.rest with considerationto a group.
These models have parallels in social organizations, with the first being more rep-
resentative of an unstructured society and the second paralleling the actions of
individuals who arc dedicated (perhaps for reasons of self-intcmt) to fulfilling a
successful role in astructured organization such as a corporation. in the latter case,
independent agents work together with appropri atc (and hierarchical) division of
responsibility towards fulfilling a common goal. Real-wor]d applications can bc
sufficiently complex that only this sccond type of organization may enable timely,
robust, and coherent behavior.

3.0COOPERATINGAGENTSINADISTRIBUTED
AR CHITECTURE

The distributed architecture shown in Figure 1 is based on a central message rout-
ing scheme that is not shown in the figure. The various agents arc allocated among
a configuration of UNIX workstations. T'he data management module receives data
from asource (in the case of our current application, the data is spacecraft telem-
ctry received from JP1.’s ground data system) and allocates it to the appropriate
subsystem monitor based on identification of data type. (Our system is partitioned
according to the partitioning of the spacecraft itsclf, with onc subsystem monitor
for every spacecraft subsystem covered by M ARV 1 il.. Spacecraft subsystems in-
clude command and data, attitude and articulation control,propulsion, tclecommu-
nications, thermal, and power. Such a partitioning reflects the natural partitioning
of the system being monitored, which is desirable for rc.a-time diagnostic
architectures.) Each of the subsystem monitors provides agorithmic functions such
as validation of tclemetry, detection of anomalies, trend analysis and automatic
reporting. These functions, while not in themscelves of interestin Al or computer
science research arc vital componenits of a real-world diagnostic system. They arc

i mplemented here in conventional C code for p erformance reasons. In additi on,



cach subsystem process provides diagnosis of failures based on anomalous data,
and recommendation of corrective actions. The latter two functions arc provided
by knowledge-based agents that arc ecmbedded within each of the individual sub-
system monitors. The remaining modules include the graphical user interface and
display processcs for each of the subsystem monitors, and the system-level di ag-
nostic agent for handling failures that manifest themselves across multiple
subsystems (and therefore cannot be completely analyzed by any one subsystem
aone),

The interconnectivity of the distributed system is provided by a TCP/IP central
router program and a set of messaging routines that are linked into the subsystem
processes. All processes arc connected to the central router by UNJ X sockets. The

DISTRIBUTED MARVEL ARCHITECTURE SUBSYSTEM PROCESS ARCHITECTURE
DATA
MANAGEMENT ) DATA
PROCESS DIAGNOSTICS FILES
SUBSYSTEM SUBSYSTEM SUBSYSTEM REAL-TIME
PROCESS PROCESS PROCESS MONITORING
SYSTEM-LEVEL \ GRAPHICAL '
| DIAGNOSTICS F USER INTERFACE |
i

- Knowledge [ ] Conventional Hybrid
Process Process [ | Process

Figure 1. The distributed architecture cm the left can currently be configured toru
on one to four UNIX workstations, with the most common operational configura-
tion involving two workstations (for compatibility with analyst responsibilities).
‘I"he hybrid subsystem processes on the left arc composed of conventional and
knowledge processes, as shown in the figurc on the right. Knowledge, processes arc
uscd only when a reasoning capability is explicitly required.
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basic mecasurement of performance for the distributed system is the speed-up S(N),
defined as the sequential execution time divided by the execution time on N
processors. It has not been possible to measure a unique value S(N) because of the
heterogencous nature of the agents.  This heterogencit y arises because the pro-
cessing loads of the six basic agents (the data management module, the four
subsystem modules, and the system-level diagnostician) arc not identical, Our al-
ternative to this measurement is the lowest specdup of the individual modules.
With a four-processor implementat ion, a speedup of 3.6, or 0.9N was observed.
This result indicates that MARV1 i]. is a highly efficient distributed system. Two
factors contribute to these results. The first is the modularity inherent in the ap-
plication (and in many other complex applications). The second factor is a
distributed des gn that effectively minimizes the need forinterprocess

communication.

4.0 APPLICATION ‘1'0 MONITORING ANJ) DIAGNOSIS OF A
REA1.11'1<0111 .EM

in this section we provide an example of cooperat ion bet ween multiple hierarchical
agents in an actual real-time. system, as shown in Figure 2. This figure depicts four
knowledge-based agents (shown in black and), each of which has expertise in a
diffcrent domain of the engincering subsystems of the Voyager spacccraft. T'wo of
the.sc agents arc responsible for diagnosing anomalies in specific spacecraft sub-
systems: Computer Command Subsystem (CCS), and Attitude and Articulation
Control Subsystem (AACS). A third agent, the System 1.evel knowledge agent, is
at a higher Jevel in the agent hierarchy and is responsible for diagnosing anomalies
that cannot be fully analyzed in any single subsystem domain. A fourth agent
provides dataqualily information 10 the other agents basedon data from the Tele-
communications Subsystem (Tclecom), so that when data quality is unreliable,
alarms resulting from the diagnostic activity of the other agents can be suppressed.




All diagnostic communication bet ween agents is coordinated by the System 1.cvel
agent. All data quality messages arc handled by an algorithmic software module
that also communicates with the graphical user interface. There is no direct com-
munication between subsystem agents. As explained in the previous section, each

agent has an algorithmic tclemetry monitor process associated with it.

‘J'he Telecom agent differs from the other two subsystem agents in that its purpose
isto determine the quality of the telemetry data being received from the spacecraf,
rather than diagnose subsystem anomalies that occur on the spacecraft. The data
quality levelis passed to the Data Quality Management process, which in turn
sends this information to the various telemetry monitor processes. If the data qual-

ity isdetermined to be very poor, the reporting of anomalies is partially suppressed
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Figure 2. Communication among four intelligent agents in a real-titnc monitoring
and diagnosis system. ‘1 'he system also cent sins algorithmic and graphcial user
interface (Gill) processes (which provide r-c(i/green or red/orange/yellow/] in]c/green
alarm notification as determined by the knowledge processes).




(as explained below) since the telemetry that led to the anomaly diagnosisis prob-
ably not reliable.

Our example begins with the arrival of telemetry from the CCS subsystem which
indicates an abnormally high computer cventcount. The CCS event countis in-
cremented each t imce that an event is i nit iated by t he spacecraft computer, One 1 ypc
of event is fault-protection, which attempts to automatically correct a fault that has
been detected or protect against harmful consequences of such a fault. ‘1’bus, an
abnormally high event count could indicate entry into fault protection sequences.
The CCS telemetry monitor compares the telemetry event count to the predicted
event count and finds that they are not equal. Since this is an anomaly, the monitor
passes the event count to the CCS knowledge agent for further analysis. The CCS
agent finds that the tclemetry event count excecds the expected event count by 56.
A difference of 56 in the event count may indicate that a "hcartbeat failure” has
occurred on the spacecraft. The CCS “heartbeat” isasignal (called a“power code”)
sent every ten seconds from the AACS subsystem to the CCS subsystem on board
the spacecraft. If the signal is received at the end of the expected time interval, the
CCS spacecraft subsystem assumes that the AACS subsystemis functioning,
normally. If on the other hand the CCS fails to reccive the heartbeat signal twice
in asingle hour (“heartbeat failure™"), the CCS assumes that the AACS hasfailed in
some way, and it issues a series of commands to switch to redundant back-up com-
ponents inthe AACS, in an effort 1o correct the problem.

1 lowever, adifference of 56 between the actual event count and cxpected event
count is not enough cvidence in itself to conclude that a heartbeat failure has
occurred,, “1 here may have been other cvents not related to t he heartbeat that hap-
pened to increase the event count by 56. Yurthermore, there is no way to confirm
the occurrence of a heartbeat failure from any of the CCS tclemetry. The CCS
agent knows that a complete diagnosis of the. problem is beyond its domain and so
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in this casc it passes on the heartbeat failure cvidence to the higher level System
1.evel agent for further arig] ysis and possible confirmation by other agents,

Like the subsystem agents, the System 1.evel agent is data-driven. Upon receipt of
the message from the CCS agent, the System 1 .cvel agent asserts afact into its local
knowledge base indicating that a possible heartbeat failure. was detected by the
CCS. This fact matches half of the antecedent of a data-driven rule in the System
l.evel KB, but this is not sufficient to fire the rule. The heartbeat failure anomaly
can be confirmed by diagnostic rules in the AACS agent, but at this pointno other
messages have been received at the S ystem L.evel, so not hi ng is reported to the

user. The System I .cvel returns control to the telemetry monitor process.

The next tclemetry to arrive is a status word from the AACS subsystem. The
AACS telemetry monitor compares the telemetry status word to the expected status
word valuc and finds that they arc not cqual. It then passes the status word to the
AACS knowledge agent. “Jim agent analyzes the status word bits and determines
that several A ACS components have been swapped off-] i nc and their redundant
back-up units have been activate.d. Based on ibis pattern of events it concludes that
a possible heartbeat failure has occurred. But this information by itself is not
cnough to be certain that a heartbeat failure has actually taken place. The AACS
agent knows that a complete diagnosis of the problem is beyond its domain and will
require information from onc or more other agents. So it sends a message to the
System1.evel agent notifying it of the possible heartbeat failure.

When the System 1.evel agent receives the heartbeat failure message from the
AACS agent, it asserts afact into its local knowledge base indicating that a possible
heartbeat failure was dctected by the AACS. At this point the previously asserted
fact from the CCS agent combined with the. ncw fact from the AACS agent match
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the complete antecedent of a data-driven rule in the System Level knowledge base,
and the rule fires. The consequent of the rule causes an anomaly message to bc sent
to the System Level monitor for display to the user. 1lowever, before this message
isdisplayed, the monitor checks the current data quality as determined by the Tele-
com agent. If the data quality isin the range of marginal to crror free, the monitor
displays both the anomaly message and the data quality level in the output window,
sounds an audible alarm, and turns the output window color to red. If onthe other
hand the data quality is poor, meaning excessively noisy, then the telemetry that led
to the anomaly diagnosis was probably corrupted during transmission, and the re-
sulting conclusion is probably incorrect. in the latter case the anomaly message is
still output to the user, but the alarm is not sounded and the output window color is
not changed. In addition, the data quality is displayed along with the anomaly
message so that the uscr isinformed that the anomaly diagnosis was probably duc
to data corruption.

This example il 1 ust rates the cooperat ion and communicant ion bet ween four different
knowledge agentsin a hierarchical organization. 1 nformation from a 1 the agentsis
required in order to provide a complete diagnosis of the anomaly condition. These
agents illustrate the principles outlined in section 2. Each agent is a data-driven
diagnostician responsible for a constrained non-overlapping domain. Hachof the
subsystem agents has meta-knowledge that allows it to identify symptoms that may
indicate problems beyondits domain, and itreports these symptoms to a higher
level agent for cooperative multi-agent analysis,

5. PRELIMINARY RESUIL.TS

The distributed architecture described in this paper has been applied to the MAR-
VIl system for real-time spacecraft diagnostics. It has been recently developed,
as afollow-on to a uniprocessor version that could accommodate only one of the
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three subsystem agents cm any onc instalation. Preliminary tests have demon-
strated that the distributed system can process up to 1500 telemetry values per
minute. Individual subsystem agents can successfully diagnose anywhere from 2
to 220 anomalies per minute, depending on the complexity of reasoning that is
required. The System 1.cvel agent can process up to 300 anomalies per minute. For
anomalies that require analysis from multiplec agents (c.g., heartbeat failure), the
maximum number of anomal ics that can be processed in a given period of’ ti meis
equal to the speed of the slowest agent involved in the analysis (assuming all
agents exccute concurrently), plus approximately 1/5sccond for System 1 .cvel
inferencing. This is well within acceptable limits for real life mission opcrations
demands,

6. CONC1 .USIONS

The MARV10. distributed architect ure demonstrates the successful implementa-
tion of multiple cooperating agents in acomplex real-time diagnostic system. Wc
have designed an architect ure that facilitates concurrent and cooperative processing
by multiple agents in a hierarchical organization. These agents adhere to the con-
cepts of clata-driven embedded diagnosis, constrained but complete non-
overlapping domains, mcta-knowledge of globa consequences of anomalous data,
hicrarchical reporting of problems that extend beyond an agent’s domain, and
shared responsibilit y for problems that over] ap domains.

The MARVEL architecture is simple and wc]] suited for real-time telemetry
analysis. Conventional processing is used wherever possible in order to facilitate
performance. The kJow]cdge-based agents arc embedded within the algorithmic
code, and arc invoked only when necessary for diagnostic rcasoning, Distribution

of telemetry monitoring and agent processes across workstations provides signifi-
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cant improvementin performance. These qualities allow for efficient real-time.

diagnosis of anomalics occurring in a complex system.
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